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Area of Surface of Revolution: 

 If the function y=f(x) > 0 is continuously differentiable on [a, b], the area of 

the surface generated by revolving the curve y=f(x) about the x-axis is calculated as 

following: 

 The surface area of typical cylinder is dS=2r.dL 

dL will be calculated from one of the following three relations:  

i.  

ii.  

iii.  

r or  is the radius of the typical cylinder: (As in this case when the curve is rotated 

about x-axis), then  

    r=y=f(x) 

So the surface area:  

If we represent dL by the first equation, then: 

   ----(1) 

When the same area is rotated about y-axis then: 

    r=x 

The surface area is  

       ----(2) 

Note: We can use this expression instead of equation (1) in case of the curve is 

expressed as x=f(y)  
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   ----(3) 

and this expression instead of equation (2) in case of the curve is expressed as x=f(y) 

   ----(4) 

If the curve is expressed as parametric equation such: 

  x=x(t), y=y(t)  a ≤ t ≤ b 

and ,  are both continuous in above interval then the area of surface area 

generated by revolving this curve  

i. about x-axis is 

     ----(5) 

ii. about y-axis is 

     ----(6) 

Or in general from short differential form 

  

Where  

and  is the radius from axis of revolution to an 

element of arc-length dL. If axis of rotation is  

 x=k then  x-k 

 y=k then  y-k 
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Example 1: Find the area of the surface generated by revolving the curve  

 about x-axis. 

Sol.:           dS=2r.dL  

where  

and  

   

       

 

        

        square units 

Example 2: Find the area of the surface generated by revolving the portion of the 

curve y=x
2
 between x=1 and x=2 about y-

axis. 

Sol.:        dS=2r.dL  

where  

and  

 y=x
2 

   f`(x) = 2x 
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Another solution: Use x=f(y) 

y=x
2           

   

  

The limits of integration: 

 When x=1  y= (1)
2
=1 and when x=2  y=(2)

2
=4 

 

      

      square units. 

Example 3: The line segment x =1-y, 0 ≤ y ≤ 1, is revolve about x = -1 to generate 

truncated cone. Find its lateral surface area 

(which excludes the top and base areas). 

Sol.: dS=2rdL 

 r = x-k = x-(-1) = x+1  
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 So  

 When y=0   x =1-0=1 

  y=1   x =1-1=0  

  

square units 

Example 4: Find the area of the surface generated by revolving the parametric 

curve x=cos
2
t, y=sin

2
t , 0 ≤ t ≤ /2 about y-axis. 

Sol.:        dS=2.dL  

 where  

and  

         

         

  

  

    square units. 
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Homework: 

1. Find the area of surfaces generated by revolving the curves indicated below 

about x-axis. 

a.    b.  

c.    d.  

2. Find the area of surfaces generated by revolving the curves indicated below 

about y-axis: 

a.     b.  

c.  

3. Find the area of surfaces generated by revolving the curves indicated below 

about the stated axis: 

a. y=7x, 0 ≤ x ≤ 1 about y=2.  b. , 1 ≤ x ≤ 4 about x-axis. 

c. , -1 ≤ x ≤ 1 about x-axis. d. , 1 ≤ y ≤ 8 about x-axis. 

e. , 0 ≤ y ≤ 2 about x=-1.  f. , -2 ≤ y ≤ 2 about y-axis. 

g , 0 ≤ y ≤ 1 about y-axis.  h. , -1 ≤ y ≤ 0 about y-axis. 

i. x=t
2
, y=2t, 0 ≤ t ≤ 4 about x-axis.  j. x=r cost, y=r sint, 0 ≤ t ≤  about x-axis. 

k. x=a -a sin, y= a -a cos, 0 ≤  ≤ 2 about x-axis. 
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